

SEMITOP[®] 3

IGBT Module

SK80GB125T

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonding Aluminium Nitride ceramic (DBC)
- High short circuit capability
- Low tail current with low temperature dependence

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifi				
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 125 °C	T _s = 25 °C	85	A
		T _s = 80 °C	55	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		150	А
V _{GES}			± 20	V
t _{psc}	$\label{eq:V_CC} \begin{array}{l} V_{CC} \texttt{=} 300 \; V; \; V_{GE} \leq 20 \; V; \\ V_{CES} \texttt{<} 600 \; V \end{array}$	T _j = 125 °C	10	μs
Inverse D	Diode			
I _F	T _j = 150 °C	T _s = 25 °C	90	А
		T _s = 80 °C	60	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А
Module				
I _{t(RMS)}				А
Τ _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT	_					
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 3 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,01	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			480	nA
V _{CE0}		T _j = 25 °C		1,4	1,9	V
		T _j = 125 °C		1,7	2,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C			18,6	mΩ
		T _j = 125°C			20	mΩ
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		3,2	3,3	V
		T _j = 125°C _{chiplev.}		3,85	3,7	V
C _{ies}				5,1		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,72		nF
C _{res}				0,38		nF
t _{d(on)}				180		ns
t _r	R _{Gon} = 8,2 Ω	V _{CC} = 600V		110		ns
E _{on}	D	I _{Cnom} = 80A		9,9		mJ
t _{d(off)}	R _{Goff} = 8,2 Ω	$T_{j} = 125 \text{ °C}$		358 26		ns
t _f		V _{GE} =±15V				ns
E _{off}				5		mJ
$R_{th(j-s)}$	per IGBT				0,32	K/W

SEMITOP[®] 3

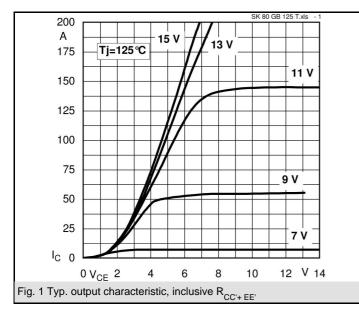
IGBT Module

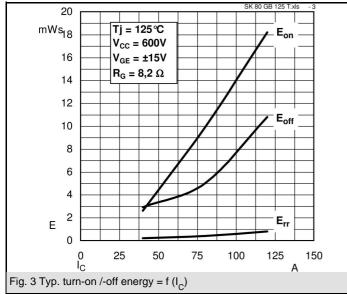
Pre	liminary	Data

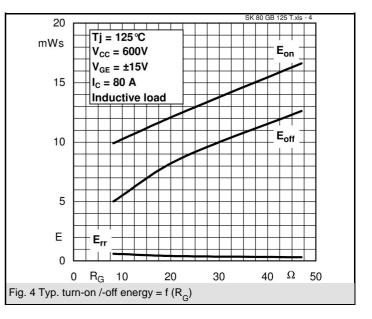
Features

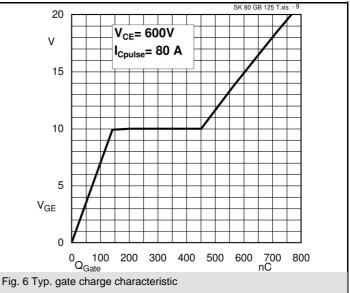
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonding Aluminium Nitride ceramic (DBC)
- High short circuit capability
- Low tail current with low temperature dependence

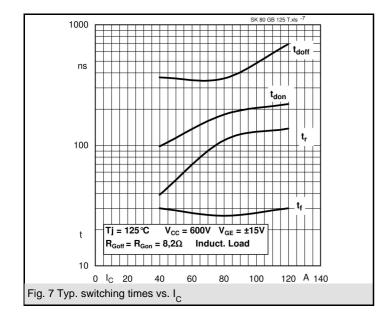
Typical Applications

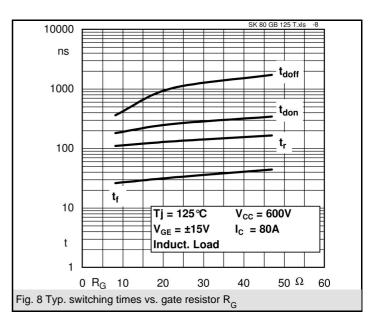

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

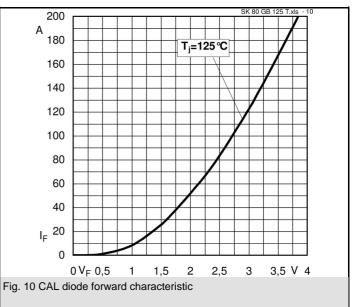

Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					•
$V_F = V_{EC}$	I _{Fnom} = 55 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V
		T _j = 150 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 25 °C				V
		T _j = 125 °C		1,2		V
r _F		T _j = 25 °C				mΩ
		T _j = 125 °C		11		mΩ
I _{RRM}	I _{Fnom} = 50 A	T _j = 125 °C		40		А
Q _{rr}	di/dt = -800 A/µs			8		μC
E _{rr}	V _{CC} = 600V			1		mJ
R _{th(j-s)D}	per diode				0,65	K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g
Tempera	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω

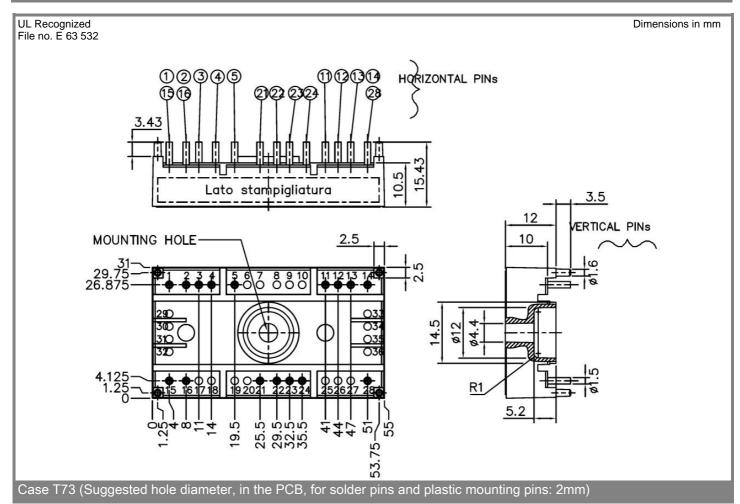

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

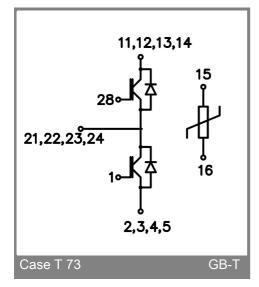

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.










© by SEMIKRON

